Доильные аппараты: устройство, виды и принцип работы

Без вакуумного насоса для доильного аппарата ни одна система работать не будет. Его смело можно назвать сердцем всего агрегата. Начинающие фермеры часто сталкиваются с проблемой выбора этого оборудования. Предложений масса и каждый продавец расхваливает свое. Поэтому мы решили разъяснить в доступной форме, от чего зависит выбор той или иной модели, и что может ломаться в таком оборудовании. Также данная информация будет полезна тем, кто решил собрать аппарат своими руками.

Составляющие и виды устройств, создающих давление

Вакуумная система, используемая в доильном аппарате, независимо от производителя, состоит из одних и тех же узлов. Сюда входит баллон, на основе которого создается вакуум, собственно, сам вакуумный насос, аппаратура контроля (вакуумметр), пульсатор и регулятор вакуума для доильного аппарата. Кстати, последний узел является одним из самых важных.

Для нормальной молокоотдачи в доильных стаканах должно быть создано оптимальное давление, и оно составляет 0,48 бар.

Вакуумный насос должен создавать переменный вакуум именно с таким показателем. Если будет больше, значит, у коров будут травмироваться соски, а при падении показателя ниже допустимой нормы отпадают стаканы. Периодичность создает пульсатор, она колеблется в пределах 45-65 тактов за минуту. Пульсатор — это небольшой клапан, который довольно просто регулируется и редко ломается.

И здесь мы подходим к самому важному моменту, определяющему нормальную работу, а именно виды насосов:

  • вакуумный доильный агрегат с сухим ротором;
  • масляные аппараты для создания вакуума;
  • водокольцевые вакуумные аппараты.

Сразу предупредим самоделкиных – своими руками вы можете только собрать готовые узлы, сделать сами узлы с нуля у вас не получится.

Если вас интересуют другие виды оборудования животноводческих ферм, то вам будет полезна статья «О молочных насосах».

Вакуумные установки

Для создания разрежения при работе доильной машины используют воздушные установки, состоящие из вакуумного насоса, вакуумного балона-ресивера, вакуум-регулятора, вакууметра, системы трубопроводов с арматурой и двигателя, которые делятся на ротационные, поршневые и эжекторные. В свою очередь ротационные вакуумные насосы подразделяются на лопастные, водокольцевые, типа Рутс и другие. Наибольшее распространение на фермах получили ротационные лопастные вакуумные установки марки УВУ-60/45 и водокольцевые воздушные насосы ВВН-3, ВВН-6, ВВН-12.

Принцип действия эжекторных (струйных) насосов следующий. Когда жидкость (или газ) протекает по трубе, имеющей сужение, давление в сужении оказывается ниже, чем в остальных частях трубы (если при этом скорость потока в сужении не достигает скорости звука). Впервые это было установлено итальянским физиком Дж. Вентури (1746-1822), по имени которого была названа трубка, основанная на данном явлении. Если откачиваемый объем присоединить к трубе в месте ее сужения, то газ из него будет переходить в область пониженного давления и уноситься струей жидкости. Эжекторные (струйные) установки крепятся на выхлопной трубе трактора и разрежение создается за счет скоростного потока выхлопных газов.

Ротационная лопастная вакуумная установка типа УВУ включает в себя (рис. 2.2) электродвигатель 1, вакуумный баллон 3, регулятор вакуума 4, вакууметр 6, вакуумпровод 5, вакуумный насос 2. При частом отключении электроэнергии может комплектоваться резервным двигателем 7 внутреннего сгорания. Унифицированный насос УВУ-60/45 работает при вакууме 53 кПа с воздухопроизводительностью 60 и 40 м3/ч. Для получения требуемого расхода изменяют частоту вращения ротора постановкой шкивов разного диаметра на вал электродвигателя.

Рис. 2.2 Общий вид вакуумной установки УВУ 60/45

Насос вакуумный пластинчато-роторный предназначен для эксплуатации в районах с умеренным климатом на открытом воздухе в диапазоне от минус 10 до плюс 40 0С и высоте над уровнем моря не более 1000 м, выпускается в четырех исполнениях.

Внутри чугунного цилиндрического корпуса 22 (рис. 2.3) с ребристой поверхностью для лучшей теплоизоляции вращается ротор 17. Ротор имеет четыре паза, в которых свободно перемещаются текстолитовые лопатки 16. Ротор вращается в шарикоподшипниках 14, установленных в посадочных отверстиях крышек 12 и 19, расположенных эксцентрично относительно оси корпуса. Подшипники со стороны внутренней полости насоса закрыты шайбами 15. Для ориентации крышек относительно корпуса при сборке насоса установлены штифты 5. Направление вращения ротора указано стрелкой на корпусе насоса. В зависимости от исполнения насос имеет один или два выходных конца ротора.

В средней части цилиндрического корпуса имеются выхлопные окна, которые соединяются с выхлопной трубой рамы. На конец выхлопной трубы насаживают глушитель, корпус которого заполнен стекловатой для задержки отработавшей смазки.

Технологический процесс работы вакуумной установки происходит следующим образом. При вращении ротора 17 (рис. 2.3) лопатки 16, под действием центробежных сил прижимаются к корпусу 22, и образуют замкнутые пространства, ограниченные ротором 17, корпусом 22 и торцевыми стенками 12 и 21, объем которых за один оборот сначала увеличивается, создавая разрежение между лопатками на стороне всасывания, а затем уменьшается. При этом воздух сжимается и вытесняется в атмосферу через выпускное отверстие.

Для смазки подшипников и трущихся поверхностей насос снабжен масленкой фитильного типа, которая обеспечивает равномерную и непрерывную подачу масла в насос.

Масленка состоит из двух основных составных частей: стакана 5 (рис. 2.4) вместимостью 0,6 л и чашки 2. Масло заливается в стакан, который закрывается крышкой 7 и фиксируется на чашке дугой 6. Из стакана масло вытекает в чашку до тех пор, пока его уровень не достигнет верхней части клинообразного выреза трубки крышки. Уровень масла в чашке масленки исполнения УВД.10.020 не регулируется. Уровень масла в чашке масленки УВА 12.000 зависит от длины выступающего конца трубки и должен находиться в пределах 13.18 мм. При снижении уровня масла воздух поступает в стакан через вырез в трубке и масло вытекает до тех пор, пока не достигнет установленного уровня.

Процесс смазки происходит следующим образом. Из чашки масло по фитилям 3 поступает в маслопроводящие каналы и под действием разности давлений в масленке и насосе по шлангам 9, отверстиям в крышках 12, 21 (рис. 2.3) насоса поступает в шарикоподшипники 14, через каналы шайб 15 в пазы ротора 17, смазывая поверхности лопаток 16, корпуса и крышек насоса. Далее масло потоком воздуха выбрасывается через выпускное отверстие насоса.

Масленка обеспечивает подачу масла в насос с расходом 0,25.0,4 г/м3 воздуха, что соответствует истечению масла из стакана при работе установки на величину одного деления в среднем за 1,5 часа работы вакуумной установки производительностью 0,75 м3/мин, и в среднем за 1,1 часа для вакуумной установки производительностью 1 м3/мин.

Контроль за поступлением масла в подшипники производится визуально через пластмассовые шланги, а общий расход — по делениям на стакане.

Рис. 2.3 Вакуумный насос: 1,20 — болты; 2, 15 — шайбы; 3 — стопорное кольцо; 4 — шкив; 5 — штифт; 6 — шпонка; 7 — винт; 8, 22 — крышки; 9 — пробка; 10,11 — прокладки; 12 — правая крышка; 13 — манжета; 14 — шарикоподшипник; 16 — лопатка; 17 — ротор; 18 — корпус; 19 — левая крышка; 21 — втулка; 22 — корпус

Обеспечение требуемого расхода масла в процессе эксплуатации производится периодической прочисткой маслопроводящих каналов в чашке 2 (рис. 2.4) и пробках 4, промывкой фитилей в дизельном топливе или изменением количества нитей в фитиле, а для масленки УВА 12.000 также изменением длины выступающей части трубки.

Для исключения возможного обратного вращения ротора и поломок лопаток при выключении электродвигателя соединение впускного отверстия насоса с вакуумпроводом осуществляется через предохранительный клапан.

Рис. 2.4 Масленка УВД.10.020: 1 — кронштейн; 2 — чашка; 3 — фитиль; 4 — пробка; 5 — стакан; 6 — дуга; 7 — крышка; 8 — прокладка; 9 — шланг

Рис. 2.5 Вакуум-регулятор

Вакуум-баллон 3 (рис. 2.2) сглаживает пульсацию вакуума, неизбежно возникающую при работе насоса, собирает влагу и молоко, попавшие в вакуум-провод, а также используется как сливная емкость при промывке трубопроводов. При работе насоса крышка вакуумного баллона должна быть плотно закрыта.

Вакуум-регулятор 4 (рис. 2.2) поддерживает стабильный вакуум в вакуум-проводе. Он состоит из клапана 1 (рис. 2.5), пружины 3, набора грузов 4, демпферирующих пластин 5 и индикатора 2.

Вакуум-регулятор работает следующим образом. Сила, действующая на клапан 1 снизу из-за разницы между атмосферным и вакуумметрическим давлением в вакуум-проводе поднимает клапан вверх, преодолевая вес груза 4. В результате этого через индикатор 2 в вакуум-провод начинает поступать атмосферный воздух. Величина разрежения, при котором поднимается клапан 1, устанавливается весом груза 4. Величина расхода воздуха через вакуум-регулятор контролируется по показаниям индикатора 2. При нормальном расходе стрелка индикатора 2 должна находиться в среднем положении. Для смягчения вибрации груза 4, они подвешиваются на пружине 3, а снизу демпферирующие пластины 5 находятся в слое масла.

Водокольцевые машины типа ВВН предназначены для создания вакуума в закрытых аппаратах и системах. Изготавливаются в двух исполнениях: ВВН1 — с номинальным давлением всасывания 0,04 МПа; ВВН2 — с номинальным давлением всасывания 0,02 МПа.

Машины типа ВВН — жидкостно-кольцевые с непосредственным приводом от электродвигателя через упругую муфту.

Водокольцевая установка ВВН-12 состоит из водокольцевой машины 4 (рис. 2.6), имеющей привод от электродвигателя 1 через муфту 2. Все это размещено на фундаментной плите 3.

Водокольцевая машина состоит из корпуса-цилиндра 2 (рис. 2.7), закрытого с торцов крышками-лобовинами. В цилиндре эксцентрично расположено лопастное колесо 1, закрепленное на валу. Выход вала из лобовин уплотняется сальниками с мягкой набивкой. Подаваемая в машину вода питает водяное кольцо 7 и создает гидравлический затвор в сальниках. Вал вращается в подшипниках, расположенных в прикрепленных к лобовинам корпусах.

Перед пуском в работу через всасывающий патрубок 5 машину заполняют примерно до оси вала водой. При пуске жидкость центробежной силой отбрасывается от втулки ротора к корпусу. При этом образуется жидкостное кольцо и серповидной пространство, которое является рабочей полостью. Рабочая полость разделена на отдельные ячейки, ограниченные лопатками, втулкой колеса, лобовинами и внутренней поверхностью жидкостного кольца. При вращении колеса объем ячеек увеличивается (на рис. 2.7 вращение по часовой стрелке) и через всасывающее окно 6 происходит всасывание газа. Затем объем ячеек уменьшается, происходит сжатие и выталкивание газа через нагнетательное окно 3. Через нагнетательный патрубок 4 вместе с газом выбрасывается вода. Для отделения воды от газов и ее сбора непосредственно на нагнетательном патрубке в вакуумных насосах устанавливают водоотделитель с открытой переливной трубой. Для отделения воды от газа в вакуумных насосах ВВН-12 применяется прямоточный сепаратор 5 (рис. 2.6). Прямоточный сепаратор представляет собой неразборный сосуд объемом около 24 литров со встроенной внутри многолопастной решеткой, посредством которой и происходит разделение газо-жидкостной смеси, выбрасываемой из насоса. Он обеспечивает практически полное отделение воды от газа при всех возможных режимах работы.

При использовании машины в качестве компрессора к сливному патрубку сепаратора присоединяется водоотводчик, обеспечивающий слив воды без утечки газа.

Преимуществом водокольцевых вакуумных машин перед лопастными вакуумными насосами является то, что при вращении ротор не касается стенок статора. Однако при вращении ротора происходит повышение температуры воды в статоре насоса, что снижает его подачу. Для повышения устойчивости работы насоса ВВН предусмотрена установка специального охладителя воды.

Рис. 2.6 Общий вид вакуумного насоса ВВН-12

Рис. 2.7 Схема водокольцевой машины

Основные параметры применимости водокольцевых машин представлены в таблице 2.1.

2.1. Показатели водокольцевых вакуумных машин
ПоказательТипоразмер
ВВН-3ВВН-6ВВН-12ВВН-25
Производительность при номинальном давлении всасывания, м3/мин3 (2,7)6(5,4)12 (10,8)25 (22,5)
Номинальное вакуумерическое давление от барометрического давления, %60 (80)
Максимальный вакуум от барометрического давления, %9096
Удельный расход воды на номинальном режиме, дм3/с0,13 (0,2)0,3 (0,47)0,5 (0,75)1,0 (1,5)
Мощность, кВт13223075
Масса, кг125215455980
Примечание: в скобках даны значения для вакуумных насосов исполнения 2

Рис. 2.8 Общий вид водокольцевой вакуумной установки УВВ-Ф-60Д: 1 — вакуумпровод; 2 — предохранитель; 3 — насос; 4 — емкость для воды; 5 — электродвигатель; 6 — выхлопная труба; 7 — нагнетательный патрубок

Установка вакуумная водокольцевая УВВ-Ф-60Д предназначена для создания вакуума, используется для комплектации доильных установок всех типов. Установка не предназначена для откачки агрессивных газов и паров.

Состоит из водокольцевого вакуумного насоса 3 (рис. 2.8) с приводом от электродвигалея 5 (мощностью 6 кВт), установленного над емкостью для воды 4. Вакуумный насос соединен с вауумпроводом 1 через предохранитель 2. Остаточный воздух вместе с водой по трубопроводу 6 выбрасывается из помещения.

Основные технические характеристики водокольцевой вакуумной установки УВВ-Ф-60Д представлены в табл. 2.2.

2.2 Основные технические характеристики установки УВВ-Ф-60Д
Наименование параметра и единицы измеренияЗначение параметра
Производительность при h=50кПа, м3/ч60±6
Мощность, потребляемая при номинальном режиме, кВт4±0,4
Предельное остаточное давление, кПа15±5
Габаритные размеры, м0,65х0,36х0,75
Масса без воды, кг110
Объем жидкости, заливаемой в водоотделитель, дм350
Условный проход патрубком, мм40

Для некоторых процессов требуется очень большая быстрота откачки, хотя бы и не при очень низких давлениях. Этим требованиям удовлетворяют двухроторные объемные насосы типа воздуходувки Рутса. Схема такого насоса представлена на рис. 2.9.

Рис. 2.9 Схема двухроторного насоса типа Рутса

Два длинных ротора с поперечным сечением, напоминающим восьмерку, вращаются в противоположных направлениях, не соприкасаясь ни с друг другом, ни со стенками корпуса, так что насос может работать без смазки. Необходимости в масляном уплотнении тоже нет, поскольку очень малы зазоры между подогнанными деталями конструкции.

Ротор вращается с частотой до 50 с-1, и высокая быстрота откачки поддерживается до давлений порядка одной миллионной атмосферного. Каждый ротор может иметь два или три кулачка.

Хотя такие насосы способны работать с прямым выхлопом в атмосферу, на их выходе обычно устанавливают вспомогательный вращательный масляный насос, который не только понижает их предельное давление, но и повышает КПД, снижая потребляемую мощность, что позволяет обходиться менее сложной системой охлаждения. Вспомогательный насос, пропускающий ту же массу газа, но при более высоких давлениях, может быть сравнительно небольшим.

Сухой ротор

Здесь мы сталкиваемся с первой уловкой продавцов. Помимо создания оптимального давления есть такой показатель, как производительность. Для индивидуального доильного аппарата, то есть, доим одну корову, одним аппаратом, он составляет 110 л/мин. Если вы собираетесь одним аппаратом доить две коровы одновременно, то производительность должна быть 220 л/мин. И так по нарастающей.

Для экономии частникам рекомендуют брать насос с сухим ротором на 110 л/мин и доить коров по очереди. Но почему-то умалчивают, что такое доение ведет к перегреву оборудования, а для подобных аппаратов это очень важно.

Лопатки в таких агрегатах графитовые. Эта смазка действительно имеет очень высокий коэффициент скольжения, что является причиной бесшумной работы. Но при длительной эксплуатации лопатки перегреваются и могут деформироваться. Проще говоря, насос довольно быстро клинит. А при обращении в сервисный центр вас могут обвинить в нарушении условий эксплуатации и отказать в гарантийном обслуживании.

Делаем вывод – вакуумные приборы с графитовым сухим ротором — штука хорошая, но при условии, если у вас не более 2-3 коров в хозяйстве.

Как доить корову аппаратом?

Доение коровы аппаратом

Технология машинного доения коровы проста, но требует соблюдения правильного порядка действий и ряда правил:

  • Перед доением проверить исправность оборудования, в особенности работу пульсатора, коллектора и вакуумной установки.
  • Осмотреть корову. Если на вымени и сосках имеются маститы, доить её вручную. Переводить корову на машинное доение только после полного выздоровления.
  • За час до надоя очистить стойла и обмыть вымя теплой водой или специальным раствором. Использовать холодную или горячую жидкость нельзя, поскольку это замедлит молокоотдачу. Возле коровы вести себя спокойно, не повышая голоса.
  • После обработки насухо вытереть соски с помощью индивидуальных салфеток и помассировать их круговыми движениями, слегка подталкивая вверх отдельные части вымени, повторяя действия теленка при кормлении.
  • Вручную выдоить небольшую порцию молока и проверить, чтобы в нём не было сгустков крови, включений лимфы и пр. За это время у животного активизируется рефлекс молокоотдачи.
  • Предварительно открыть вакуумный кран машины и сразу после подготовки вымени надеть доильные стаканы. Для этого одной рукой снизу взять коллектор и подвести его к вымени, а другой рукой поочередно надевать стаканы на соски, причем начиная с задних.
  • Только после начала доения перейти к следующей корове. При замедлении или прекращении отдачи молока массажировать вымя коровы до возобновления процесса. Отрывать оборудование при этом не нужно.
  • При отпадании доильных стаканов аппарат отключить, стаканы промыть чистой водой, помассировать вымя и вновь начать доение. Саму машину стоит располагать ближе к передним копытам коровы, чтобы её было сложнее опрокинуть.
  • После доения снять стаканы. Для этого одной рукой взять коллектор или молочные трубки и сжать их, а другой – закрыть кран на коллекторе или зажим на шланге. Далее отжать резиновый присосок стакана, чтобы выпустить воздух, и параллельно с этим плавно снять все стаканы. Коллектор соединить с вакуумом и отсосать остатки молока в стаканах.
  • В конце протереть соски сухим полотенцем и смазать вазелином или эмульсией с антисептическим действием.
  • Доильный аппарат очистить с помощью вакуума. Сначала пропустить через него теплую воду (32-35°С), а затем и дезинфицирующее средство. Время от времени желательно разбирать аппарат по деталям и смывать образовавшийся налет. Хранить машину в специально отведенном месте.

Если после доения аппаратом в вымени осталось молоко, додаивать корову вручную, чтобы у неё не развился мастит.

Схема пользования доильным аппаратом выглядит таким образом:

Правила машинного доения коров

Мифы и правда о масляных системах

Если сравнивать принцип работы масляных и сухих агрегатов, то конструктивно они мало чем отличаются. Просто в этих насосах вместо графитовой установлена текстолитовая лопатка, проваренная в масле.

Плюс там предусмотрена постоянная циркуляция масла. В результате такой новации оно выступает не только по своему прямому назначению, то есть, смазка, а еще обеспечивает отвод тепла и препятствует перегреву.

Самыми распространенными мифами, касающимися подобных масляных систем, являются слухи о якобы сложной настройке и большом расходе смазочного материала. Мы можем вас заверить, что регулировка в таких системах ничуть не сложнее, чем в сухих. А басни по поводу расточительного использования, скорее всего, придуманы конкурентами.

Поэтому для небольших фермерских хозяйств, где предусмотрено индивидуальное доение коров одним аппаратом, лучше брать именно масляную систему. Как показывает практика, такой вакуумный насос может работать без перерыва на охлаждение до 3-4 часов.

Работает вода

Водокольцевые насосы устанавливают на доильные залы с одновременным обслуживанием более 6-8 коров. Как можно понять из названия, рабочим телом в них выступает вода, и поддержание ее заданной температуры требует установки дополнительной аппаратуры и датчиков слежения.

В водокольцевых насосах регуляторы вакуума для доильных аппаратов представляют собой сложные многокомпонентные устройства, и настройка здесь требует определенной подготовки. Мы не рекомендуем брать такое оборудование для фермерских хозяйств, в которых менее 50 голов скота. А на индивидуальных аппаратах подобные насосы вообще не ставятся.

Выбор вакуумного оборудования для доильных систем КРС дело тонкое, но при большом желании в этом вопросе разобраться можно. Главное для вас определиться с количеством голов, временем работы насосов и очередностью доения.

Поделитесь статьей с друзьями в сети и, возможно, ваш лайк убережет кого-то от ошибки при выборе вакуумного насоса.

Расскажите в комментариях, приходилось ли вам пользоваться подобными системами.

1. Установка ДАС-2В

2. Установка АД-100Б

3. Доильная установка АДМ-8

Рис. 182. Доильная установка АДМ-8А с молокопроводом:

1 — вакуум-провод, 2 — переключатель, 3 — молокопровод, 4 — главный вакуумный регулятор, 5 — устройство для подъ­ема молокопровода, 6 — промывочная ванна, 7 — счетчик УЗМ-1, 8 — доильные аппараты, 9 – промывочный автомат, 10 — охладитель молока, 11 — фильтр, 12 — молокосборник с воздухоотделителем, 13 — молочный насос, 14 — групповой счетчик молока, 15 — шкаф для запасных частей, 16 — вакуумная установка, 17 — электрический водонагреватель

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями: